Refine your search:     
Report No.
 - 
Search Results: Records 1-20 displayed on this page of 794

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

Journal Articles

Design for detecting recycling muon after muon-catalyzed fusion reaction in solid hydrogen isotope target

Okutsu, Kenichi*; Yamashita, Takuma*; Kino, Yasushi*; Nakashima, Ryota*; Miyashita, Konan*; Yasuda, Kazuhiro*; Okada, Shinji*; Sato, Motoyasu*; Oka, Toshitaka; Kawamura, Naritoshi*; et al.

Fusion Engineering and Design, 170, p.112712_1 - 112712_4, 2021/09

 Times Cited Count:3 Percentile:45.99(Nuclear Science & Technology)

A muonic molecule which consists of two hydrogen isotope nuclei (deuteron (d) or tritium (t)) and a muon decays immediately via nuclear fusion and the muon will be released as a recycling muon, and start to find another hydrogen isotope nucleus. The reaction cycle continues until the muon ends up its lifetime of 2.2 $$mu$$s. Since the muon does not participate in the nuclear reaction, the reaction is so called a muon catalyzed fusion ($$mu$$CF). The recycling muon has a particular kinetic energy (KE) of the muon molecular orbital when the nuclear reaction occurs. Since the KE is based on the unified atom limit where distance between two nuclei is zero. A precise few-body calculation estimating KE distribution (KED) is also in progress, which could be compared with the experimental results. In the present work, we observed recycling muons after $$mu$$CF reaction.

Journal Articles

Time evolution calculation of muon catalysed fusion; Emission of recycling muons from a two-layer hydrogen film

Yamashita, Takuma*; Okutsu, Kenichi*; Kino, Yasushi*; Nakashima, Ryota*; Miyashita, Konan*; Yasuda, Kazuhiro*; Okada, Shinji*; Sato, Motoyasu*; Oka, Toshitaka; Kawamura, Naritoshi*; et al.

Fusion Engineering and Design, 169, p.112580_1 - 112580_5, 2021/08

 Times Cited Count:3 Percentile:45.99(Nuclear Science & Technology)

A muon ($$mu$$) having 207 times larger mass of electron and the same charge as the electron has been known to catalyze a nuclear fusion between deuteron (d) and triton (t). These two nuclei are bound by $$mu$$ and form a muonic hydrogen molecular ion, dt$$mu$$. Due to the short inter-nuclear distance of dt$$mu$$, the nuclear fusion, d +t$$rightarrow alpha$$ + n + 17.6 MeV, occurs inside the molecule. This reaction is called muon catalyzed fusion ($$mu$$CF). Recently, the interest on $$mu$$CF is renewed from the viewpoint of applications, such as a source of high-resolution muon beam and mono-energetic neutron beam. In this work, we report a time evolution calculation of $$mu$$CF in a two-layered hydrogen isotope target.

Journal Articles

Feasibility study on tritium recoil barrier for neutron reflectors of research and test reactors

Kenzhina, I.*; Ishitsuka, Etsuo; Ho, H. Q.; Sakamoto, Naoki*; Okumura, Keisuke; Takemoto, Noriyuki; Chikhray, Y.*

Fusion Engineering and Design, 164, p.112181_1 - 112181_5, 2021/03

Tritium release into the primary coolant during operation of the JMTR (Japan Materials Testing Reactor) and the JRR-3M (Japan Research Reactor-3M) had been studied. It is found that the recoil release by $$^{6}$$Li(n$$_{t}$$,$$alpha$$)$$^{3}$$H reaction, which comes from a chain reaction of beryllium neutron reflectors, is dominant. To prevent tritium recoil release, the surface area of beryllium neutron reflectors needs to be minimum in the core design and/or be shielded with other material. In this paper, as the feasibility study of the tritium recoil barrier for the beryllium neutron reflectors, various materials such as Al, Ti, V, Ni, and Zr were evaluated from the viewpoint of the thickness of barriers, activities after long-term operations, and effects on the reactivities. From the results of evaluations, Al would be a suitable candidate as the tritium recoil barrier for the beryllium neutron reflectors.

Journal Articles

Experimental evaluation of wall shear stress in a double contraction nozzle using a water mock-up of a liquid Li target for an intense fusion neutron source

Kondo, Hiroo*; Kanemura, Takuji*; Park, C. H.*; Oyaizu, Makoto*; Hirakawa, Yasushi; Furukawa, Tomohiro

Fusion Engineering and Design, 146(Part A), p.285 - 288, 2019/09

 Times Cited Count:1 Percentile:11.15(Nuclear Science & Technology)

Herein, the wall shear stress in a double contraction nozzle has been evaluated experimentally to produce a liquid lithium (Li) target as a beam target for intense fusion neutron sources such as the International Fusion Materials Irradiation Facility (IFMIF), the Advanced Fusion Neutron Source (A-FNS), and the DEMO Oriented Neutron Source (DONES). The boundary layer thickness and wall shear stress are essential physical parameters to understand erosion-corrosion by the high-speed liquid Li flow in the nozzle, which is the key component in producing a stable Li target. Therefore, these parameters were experimentally evaluated using an acrylic mock-up of the target assembly. The velocity distribution in the nozzle was measured by a laser-doppler velocimeter and the momentum thickness along the nozzle wall was calculated using an empirical prediction method. The resulting momentum thickness was used to estimate the variation of the wall shear stress along the nozzle wall. Consequently, the wall shear stress was at the maximum in the second convergent section in front of the nozzle exit.

Journal Articles

TENDL-2017 benchmark test with iron shielding experiment at QST/TIARA

Kwon, Saerom*; Konno, Chikara; Ota, Masayuki*; Ochiai, Kentaro*; Sato, Satoshi*; Kasugai, Atsushi*

Fusion Engineering and Design, 144, p.209 - 214, 2019/07

 Times Cited Count:3 Percentile:31.89(Nuclear Science & Technology)

We performed a TENDL-2017 benchmark test with iron shielding experiments by using 40 and 65 MeV neutrons, in order to verify a nuclear data library above 20 MeV for neutronics analyses of A-FNS. We found out that the calculated neutron spectra with TENDL-2017 unnaturally increased near 30 MeV. We figured out that incorrect secondary neutron spectrum data in $$^{54}$$Fe, $$^{56}$$Fe and $$^{58}$$Fe at 30 MeV caused the increase of the neutron flux. Similar problems occurred in a lot of nuclei of TENDL-2017, TENDL-2015 and FENDL-3.1d from TENDL-2010 and TENDL-2011.

Journal Articles

Nuclear and thermal feasibility of lithium-loaded high temperature gas-cooled reactor for tritium production for fusion reactors

Goto, Minoru; Okumura, Keisuke; Nakagawa, Shigeaki; Inaba, Yoshitomo; Matsuura, Hideaki*; Nakaya, Hiroyuki*; Katayama, Kazunari*

Fusion Engineering and Design, 136(Part A), p.357 - 361, 2018/11

 Times Cited Count:6 Percentile:52.79(Nuclear Science & Technology)

A High Temperature Gas-cooled Reactor (HTGR) is proposed as a tritium production device, which has the potential to produce a large amount of tritium using $$^{6}$$Li(n,$$alpha$$)T reaction. In the HTGR design, generally, boron is loaded into the core as a burnable poison to suppress excess reactivity. In this study, lithium is loaded into the HTGR core instead of boron and is used as a burnable poison aiming to produce thermal energy and tritium simultaneously. The nuclear characteristics and the fuel temperature were calculated to confirm the feasibility of the lithium-loaded HTGR. It was shown that the calculation results satisfied the design requirements and hence the feasibility was confirmed for the lithium-loaded HTGR, which produce thermal energy and tritium.

Journal Articles

Conceptual design and verification of long-distance laser-probe system for Li target diagnostics of intense fusion neutron source

Kondo, Hiroo*; Kanemura, Takuji*; Hirakawa, Yasushi; Furukawa, Tomohiro

Fusion Engineering and Design, 136(Part A), p.24 - 28, 2018/11

 Times Cited Count:1 Percentile:0.01(Nuclear Science & Technology)

In the IFMIF-EVEDA project, we designed and constructed the IFMIF-EVEDA Li Test Loop (ELTL), and we performed experiments to validate the stability of the Li target. This project required a diagnostic tool to be developed in order to examine the Li target; as such, we developed a unique laser-based method that we call the laser-probe method; this method combines a high-precision laser distance meter with a statistical data analysis method. Following the successful development of the laser-probe method, we proposes a long-distance-measurement of the laser probe method (long-distance LP method) as a diagnostics tool in off-beam conditions for IFMIF or the relevant neutron sources. In this study, the measurement uncertainty resulting from coherency of the laser in a long-distance-measurement has been verified by using stationary objects and a water jet simulating the liquid Li target.

Journal Articles

Benchmark experiment on copper with graphite by using DT neutrons at JAEA/FNS

Kwon, Saerom*; Ota, Masayuki*; Sato, Satoshi*; Konno, Chikara; Ochiai, Kentaro*

Fusion Engineering and Design, 124, p.1161 - 1164, 2017/11

 Times Cited Count:2 Percentile:19.65(Nuclear Science & Technology)

Copper is used as a material for superconducting coil in magnetic confinement fusion reactor and for accelerator-driven neutron source such as IFMIF. In our previous copper benchmark experiment, we had pointed out that the elastic scattering and capture reaction data of the copper had included some problems in the resonance region, which had caused a large underestimation of reaction rates of non-threshold reactions. In order to corroborate this issue, we carried out a new benchmark experiment on copper with graphite in the neutron field with more low energy neutrons. We measured reaction rates using the activation foils. We analyzed the experiment with MCNP code and the latest nuclear data libraries. As a result, the calculated reaction rates related to low energy neutrons, still excessively underestimated the measured ones as in the previous benchmark experiment. We also tested the nuclear data of copper modified in the previous study, where the elastic scattering and capture reaction cross section of copper. Then the calculated reaction rates with the modified copper nuclear data reproduced the measured ones well. It was revealed that the modification of the specific cross sections had been sufficient in the neutron field with more low energy neutrons.

Journal Articles

Benchmark experiment on molybdenum with graphite by using DT neutrons at JAEA/FNS

Ota, Masayuki*; Kwon, Saerom*; Sato, Satoshi*; Konno, Chikara; Ochiai, Kentaro*

Fusion Engineering and Design, 114, p.127 - 130, 2017/01

 Times Cited Count:0 Percentile:0.01(Nuclear Science & Technology)

A new fusion neutron source is now under consideration in Japan. Type 316L stainless steel (SUS316L) which is a structural material of the target-system contains a few percent of molybdenum. In our previous benchmark experiment on molybdenum at JAEA/FNS, we found problems of the cross section data above a few hundred eV in Mo. We perform a new benchmark experiment on Mo with graphite in order to validate the Mo data in the lower energy region. Several dosimetry reaction rates and fission rates are measured in the assembly and compared with the calculated values with the Monte-Carlo transport code MCNP5-1.40 and the recent nuclear data libraries. It is suggested that the (n,$$gamma$$) cross section of $$^{95}$$Mo is underestimated in the tail region below the large resonance at 45 eV in the recent nuclear data libraries.

Journal Articles

Impact hammer test of ITER blanket remote handling system

Noguchi, Yuto; Maruyama, Takahito; Ueno, Kenichi; Komai, Masafumi; Takeda, Nobukazu; Kakudate, Satoshi

Fusion Engineering and Design, 109-111(Part B), p.1291 - 1295, 2016/11

 Times Cited Count:2 Percentile:19.71(Nuclear Science & Technology)

This paper reports the impact hammer test of the full-scale mock-up of ITER Blanket Remote Handling system (BRHS). Since the BRHS, which is composed of the articulated rail and the vehicle manipulator which travels on the rail deployed in the vacuum vessel, is subjected to the floor response spectrum with 14 G peak at 8 Hz, evaluation of dynamic response of the system is of essential importance. Recently impact hammer testing on the full-scale mock-up of the BRHS was carried out to verify the finite element method seismic analysis and to experimentally obtain the damping ratio of the system. The results showed that the mock-up has a vertical major natural mode with a natural frequency of 7.5 Hz and a damping ratio of 0.5%. While higher structural damping ratios is predicted in a high amplitude excitation such as major earthquake, it was confirmed that the experimental natural major frequencies are in agreement with the major frequencies obtained by elastic dynamic analysis.

Journal Articles

Synthesis and characteristics of ternary Be-Ti-V beryllide pebbles as advanced neutron multipliers

Kim, Jae-Hwan; Nakamichi, Masaru

Fusion Engineering and Design, 109-111(Part B), p.1764 - 1768, 2016/11

 Times Cited Count:13 Percentile:77.16(Nuclear Science & Technology)

Journal Articles

Progress of JT-60SA Project; EU-JA joint efforts for assembly and fabrication of superconducting tokamak facilities and its research planning

Shirai, Hiroshi; Barabaschi, P.*; Kamada, Yutaka; JT-60SA Team

Fusion Engineering and Design, 109-111(Part B), p.1701 - 1708, 2016/11

 Times Cited Count:21 Percentile:88.83(Nuclear Science & Technology)

The JT-60SA Project has shown steady progress toward the first plasma in 2019. JT-60SA is a superconducting tokamak designed to operate in the break-even conditions for a long pulse duration with a maximum plasma current of 5.5 MA. Design and fabrication of JT-60SA components shared by EU and Japan started in 2007. Assembly in the torus hall started in January 2013, and welding work of the vacuum vessel sectors is currently on going on the cryostat base. Other components such as TF coils, PF coils, power supplies, cryogenic system, cryostat vessel, thermal shields and so forth were or are being delivered to Naka site for installation, assembly and commissioning. This paper gives technical progress on fabrication, installation and assembly of tokamak components and ancillary systems, as well as progress of JT-60SA Research Plan being developed jointly by EU and Japanese fusion communities.

Journal Articles

New remarks on KERMA factors and DPA cross section data in ACE files

Konno, Chikara; Sato, Satoshi; Ota, Masayuki; Kwon, Saerom; Ochiai, Kentaro

Fusion Engineering and Design, 109-111(Part B), p.1649 - 1652, 2016/11

 Times Cited Count:7 Percentile:55.03(Nuclear Science & Technology)

Recently we have examined KERMA factors and DPA cross section data in the latest official ACE files of JENDL-4.0, ENDF/B-VII.1, JEFF-3.2 and FENDL-3.0 in more detail and we found out the following new problems on the KERMA factors and DPA cross section data. (1) NJOY bugs and incorrect nuclear data generated KERMA factors and DPA cross section data of no increase with decreasing neutron energy in low neutron energy. (2) Huge helium production data caused drastically large KERMA factors and DPA cross section data in low neutron energy. (3) It seemed that NJOY could not adequately process capture cross section data in File 6, not File 12-15. (4) KERMA factors with the kinematics method are not correct for nuclear data libraries without detailed secondary particle data (energy-angular distribution data). These problems should be resolved based on our study.

Journal Articles

Design concept of conducting shell and in-vessel components suitable for plasma vertical stability and remote maintenance scheme in DEMO reactor

Uto, Hiroyasu; Takase, Haruhiko; Sakamoto, Yoshiteru; Tobita, Kenji; Mori, Kazuo; Kudo, Tatsuya; Someya, Yoji; Asakura, Nobuyuki; Hoshino, Kazuo; Nakamura, Makoto; et al.

Fusion Engineering and Design, 103, p.93 - 97, 2016/02

 Times Cited Count:8 Percentile:60.26(Nuclear Science & Technology)

Conceptual design of in-vessel component including conducting shell has been investigated in Broader Approach (BA) DEMO design activities, in order to propose feasible DEMO reactor from plasma vertical stability and engineering viewpoint. The conducting shell for the plasma vertical stability will be incorporated behind blanket module, while the location must be close to the plasma surface as possible for the plasma stabilization. We evaluated dependence of the plasma vertical stability on the conducing shell parameters by using a 3-dimensional eddy current analysis code (EDDYCAL). The calculation results showed that the conducting shell requires more than 0.01 m thickness of Cu-alloy on DEMO. On the other hand, the electromagnetic force at the plasma disruption is a few times larger than no conducting shell case because of larger eddy current on conducting shell. The engineering design issues of in-vessel components for plasma vertical stability are presented.

Journal Articles

Development of remote pipe welding tool for divertor cassettes in JT-60SA

Hayashi, Takao; Sakurai, Shinji; Sakasai, Akira; Shibanuma, Kiyoshi; Kono, Wataru*; Onawa, Toshio*; Matsukage, Takeshi*

Fusion Engineering and Design, 101, p.180 - 185, 2015/12

 Times Cited Count:4 Percentile:33.25(Nuclear Science & Technology)

Remote pipe welding tool accessing from inside pipe has been newly developed for JT-60SA. Remote handling (RH) system is necessary for the maintenance and repair of in-vessel components such as lower divertor cassettes in JT-60SA. Cooling pipes, which connects between the divertor cassette and the vacuum vessel with bellows are required to be cut and welded in the vacuum vessel by RH system. The available space for RH system is very limited inside the vacuum vessel, especially around the divertor cassettes. Thus, the cooling pipes are required to be cut and weld from the inside in the vacuum vessel. The inner diameter, thickness and material of the cooling pipe are 54.2 mm, 2.8 mm and SUS316L, respectively. An upper pipe connected to the divertor cassette has a jut on the edge to fill the gap between pipes. Owing to the jut and two-times welding, the welding tool achieved the maximum allowable gap of 0.7 mm.

Journal Articles

Development of operation scenarios for plasma breakdown and current ramp-up phases in JT-60SA tokamak

Urano, Hajime; Fujita, Takaaki*; Ide, Shunsuke; Miyata, Yoshiaki; Matsunaga, Go; Matsukawa, Makoto

Fusion Engineering and Design, 100, p.345 - 356, 2015/11

 Times Cited Count:16 Percentile:79.46(Nuclear Science & Technology)

The operation scenarios for plasma breakdown and current ramp-up phases in JT-60SA tokamak have been developed. The induced current in the in-vessel conducting elements such as vacuum vessel and stabilizing plate increases to the comparable level of plasma current of $$sim$$600 kA during the breakdown phase and thus enhances the strength of error field. The optimized scenarios for half and full pre-magnetization cases satisfied the conditions required for the plasma initiation. At the initial plasma, the vertical magnetic field required to sustain the plasma position was controlled by the outer equilibrium field (EF) coil currents which compensate for a vertical field due to a large eddy current. The condition for the formation of divertor configurations given by the combination of the magnetic flux for plasma and the plasma current enables us to develop the operational scenarios with a smooth transition from a limiter to a divertor configuration.

Journal Articles

Enhancement of resistance against high energy laser pulse injection with chevron beam dump

Yatsuka, Eiichi; Hatae, Takaki; Bassan, M.*; Vayakis, G.*; Walsh, M.*; Itami, Kiyoshi

Fusion Engineering and Design, 100, p.461 - 467, 2015/11

 Times Cited Count:6 Percentile:45.92(Nuclear Science & Technology)

Journal Articles

Reactivity of plasma-sintered beryllium in dry air and moisture at high temperature

Kim, Jae-Hwan; Nakamichi, Masaru

Fusion Engineering and Design, 100, p.614 - 618, 2015/11

 Times Cited Count:0 Percentile:0.01(Nuclear Science & Technology)

Journal Articles

Reference design of the power supply system for the resistive-wall-mode control in JT-60SA

Ferro, A.*; Gaio, E.*; Novello, L.*; Matsukawa, Makoto; Shimada, Katsuhiro; Kawamata, Yoichi; Takechi, Manabu

Fusion Engineering and Design, 98-99, p.1053 - 1057, 2015/10

 Times Cited Count:3 Percentile:25.85(Nuclear Science & Technology)

Journal Articles

First switching network unit for the JT-60SA superconducting central solenoid

Lampasi, A.*; Zito, P.*; Coletti, A.*; Novello, L.*; Matsukawa, Makoto; Shimada, Katsuhiro; Burini, F.*; Kuate-Fone, Y.*; Taddia, G.*; Tenconi, S.*

Fusion Engineering and Design, 98-99, p.1098 - 1102, 2015/10

 Times Cited Count:10 Percentile:64.63(Nuclear Science & Technology)

794 (Records 1-20 displayed on this page)